Problem Description
Given an equation in the form of a string that contains the variable 'x' and its coefficients, solve for 'x' and return the result in the form of "x=#value". If there is no solution, return "No solution", and if there are infinite solutions, return "Infinite solutions".
Key Insights
- The equation can be split into two parts: left-hand side (LHS) and right-hand side (RHS) using the '=' character.
- Each side can contain terms with 'x' and constant integers.
- We need to collect the coefficients of 'x' and the constant terms separately from both sides.
- The final result will depend on whether the coefficients and constant terms allow for a unique solution, no solution, or infinite solutions.
Space and Time Complexity
Time Complexity: O(n), where n is the length of the equation string. We traverse the string a limited number of times. Space Complexity: O(1), since we are using a fixed amount of additional space for counting coefficients and constants.
Solution
To solve the equation, we will:
- Split the equation into LHS and RHS at the '=' character.
- Parse both sides to calculate the total coefficient of 'x' and the total constant value.
- Compare the results to determine if there's a unique solution, no solution, or infinite solutions.