We use cookies (including Google cookies) to personalize ads and analyze traffic. By continuing to use our site, you accept our Privacy Policy.

Maximum Sum of 3 Non-Overlapping Subarrays

Difficulty: Hard


Problem Description

Given an integer array nums and an integer k, find three non-overlapping subarrays of length k with maximum sum and return them. Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.


Key Insights

  • The problem requires finding three non-overlapping subarrays of fixed length k.
  • The sum of the selected subarrays should be maximized.
  • We need to consider the lexicographical order of indices when multiple combinations yield the same sum.
  • Dynamic programming can be employed to optimize the selection of subarrays.

Space and Time Complexity

Time Complexity: O(n)
Space Complexity: O(n)


Solution

To solve this problem, we will use a dynamic programming approach combined with a sliding window technique:

  1. Calculate Subarray Sums: First, compute the sums of all possible subarrays of length k using a sliding window to keep track of the sum efficiently.

  2. Dynamic Programming Arrays:

    • Use two arrays, left and right, where:
      • left[i] holds the maximum sum of a subarray ending at index i and the starting index of that subarray.
      • right[i] holds the maximum sum of a subarray starting at index i and the starting index of that subarray.
  3. Maximize Total Sum: Iterate through possible middle subarrays (from k to n - 2k) and calculate the total sum for selecting a left subarray, the middle subarray, and a right subarray.

  4. Return Indices: Track the indices of the chosen subarrays to return the lexicographically smallest solution.


Code Solutions

def maxSumOfThreeSubarrays(nums, k):
    n = len(nums)
    sum_subarrays = [0] * (n - k + 1)
    
    # Calculate sum of each subarray of length k
    current_sum = sum(nums[:k])
    sum_subarrays[0] = current_sum
    for i in range(1, n - k + 1):
        current_sum += nums[i + k - 1] - nums[i - 1]
        sum_subarrays[i] = current_sum

    # Prepare left and right maximums
    left = [0] * (n - k + 1)
    right = [0] * (n - k + 1)
    
    max_index = 0
    for i in range(n - k + 1):
        if sum_subarrays[i] > sum_subarrays[max_index]:
            max_index = i
        left[i] = max_index
    
    max_index = n - k
    for i in range(n - k, -1, -1):
        if sum_subarrays[i] >= sum_subarrays[max_index]:  # >= for lexicographical order
            max_index = i
        right[i] = max_index
    
    # Find the best combination of left, mid, right
    max_sum = 0
    result = [0, 0, 0]
    for mid in range(k, n - 2 * k + 1):
        left_index = left[mid - k]
        right_index = right[mid + k]
        total_sum = sum_subarrays[left_index] + sum_subarrays[mid] + sum_subarrays[right_index]
        
        if total_sum > max_sum:
            max_sum = total_sum
            result = [left_index, mid, right_index]
    
    return result
← Back to All Questions